8 research outputs found

    Analysis of Influencing Factors of Green Building Energy Consumption Based on Genetic Algorithm

    Get PDF
    With the advancement of modernization, high energy consumption buildings can no longer meet the needs of social development. Under the background of low carbon and energy saving, the development of green buildings has become the only way, but its energy-saving design effect needs to be further studied. Aiming at lighting and energy consumption, this study carried out multi-factor optimization analysis based on genetic algorithm on factors such as windowing ratio, wall heat transfer coefficient, window heat transfer coefficient, window transmittance and roof insulation coefficient. Firstly, the theory and technical scheme of applying data mining technology to solve the energy-saving design problems of different buildings are proposed and implemented, including the design of new and existing buildings, as well as the determination of decisive parameters and non-decisive parameters. Secondly, computer simulation and theoretical analysis are used to optimize the analysis of the building scheme, so as to find the optimal design range of each influencing factor and the optimal design method of green low-energy building. Multi-factor optimization theory and genetic algorithm principle are summarized, and the heat transfer coefficient of external wall and window of the building is selected as the optimization variable, so as to achieve low energy consumption and enclosure cost of the building. Aiming at better thermal comfort, an optimization model was established. Finally, through empirical research, an energysaving plan was designed, and genetic algorithm was used to obtain the optimal solution for maximizing the incremental benefits obtained by unit input incremental cost. The results indicate that the ideal incremental benefits come from a reasonable and effective combination of technologies, mainly from air conditioning systems and lighting systems; the setting of the benchmark return rate will directly affect the optimization effect of energy-saving plans, providing decision-makers with the optimal combination of energy-saving technologies

    Analysis of Influencing Factors of Green Building Energy Consumption Based on Genetic Algorithm

    No full text
    With the advancement of modernization, high energy consumption buildings can no longer meet the needs of social development. Under the background of low carbon and energy saving, the development of green buildings has become the only way, but its energy-saving design effect needs to be further studied. Aiming at lighting and energy consumption, this study carried out multi-factor optimization analysis based on genetic algorithm on factors such as windowing ratio, wall heat transfer coefficient, window heat transfer coefficient, window transmittance and roof insulation coefficient. Firstly, the theory and technical scheme of applying data mining technology to solve the energy-saving design problems of different buildings are proposed and implemented, including the design of new and existing buildings, as well as the determination of decisive parameters and non-decisive parameters. Secondly, computer simulation and theoretical analysis are used to optimize the analysis of the building scheme, so as to find the optimal design range of each influencing factor and the optimal design method of green low-energy building. Multi-factor optimization theory and genetic algorithm principle are summarized, and the heat transfer coefficient of external wall and window of the building is selected as the optimization variable, so as to achieve low energy consumption and enclosure cost of the building. Aiming at better thermal comfort, an optimization model was established. Finally, through empirical research, an energysaving plan was designed, and genetic algorithm was used to obtain the optimal solution for maximizing the incremental benefits obtained by unit input incremental cost. The results indicate that the ideal incremental benefits come from a reasonable and effective combination of technologies, mainly from air conditioning systems and lighting systems; the setting of the benchmark return rate will directly affect the optimization effect of energy-saving plans, providing decision-makers with the optimal combination of energy-saving technologies

    Exploiting memristive BiFeO3 bilayer structures for compact sequential logics

    Full text link
    Resistive switching devices are considered as one of the most promising candidates for the next generation memories and nonvolatile logic applications. In this paper, BiFeO3:Ti/BiFeO3 (BFTO/BFO) bilayer structures with optimized BFTO/BFO thickness ratio which show symmetric, bipolar, and nonvolatile resistive switching with good retention and endurance performance, are presented. The resistive switching mechanism is understood by a model of flexible top and bottom Schottky-like barrier heights in the BFTO/BFO bilayer structures. The resistive switching at both positive and negative bias make it possible to use both polarities of reading bias to simultaneously program and store all 16 Boolean logic functions into a single cell of a BFTO/BFO bilayer structure in three logic cycles

    Causal associations between female reproductive behaviors and psychiatric disorders: a lifecourse Mendelian randomization study

    No full text
    Abstract Background The timings of reproductive life events have been examined to be associated with various psychiatric disorders. However, studies have not considered the causal pathways from reproductive behaviors to different psychiatric disorders. This study aimed to investigate the nature of the relationships between five reproductive behaviors and twelve psychiatric disorders. Methods Firstly, we calculated genetic correlations between reproductive factors and psychiatric disorders. Then two-sample Mendelian randomization (MR) was conducted to estimate the causal associations among five reproductive behaviors, and these reproductive behaviors on twelve psychiatric disorders, using genome-wide association study (GWAS) summary data from genetic consortia. Multivariable MR was then applied to evaluate the direct effect of reproductive behaviors on these psychiatric disorders whilst accounting for other reproductive factors at different life periods. Results Univariable MR analyses provide evidence that age at menarche, age at first sexual intercourse and age at first birth have effects on one (depression), seven (anxiety disorder, ADHD, bipolar disorder, bipolar disorder II, depression, PTSD and schizophrenia) and three psychiatric disorders (ADHD, depression and PTSD) (based on p<7.14×10-4), respectively. However, after performing multivariable MR, only age at first sexual intercourse has direct effects on five psychiatric disorders (Depression, Attention deficit or hyperactivity disorder, Bipolar disorder, Posttraumatic stress disorder and schizophrenia) when accounting for other reproductive behaviors with significant effects in univariable analyses. Conclusion Our findings suggest that reproductive behaviors predominantly exert their detrimental effects on psychiatric disorders and age at first sexual intercourse has direct effects on psychiatric disorders
    corecore